主 講 人: 南京理工大學(xué), 丁凱琳 講師
報(bào)告時(shí)間:2025年7月7日 下午15:30-16:30
報(bào)告地點(diǎn):覽秀樓105學(xué)術(shù)報(bào)告廳
報(bào)告摘要: In this paper, we derive novel non-asymptotic $L_1$ and $L_2$ error bounds for kernel estimators of the density and its derivatives from data. The error bounds are explicit functions of the bandwidth, which allow us to determine the optimal bandwidth by minimizing these non-asymptotic error bounds. Assuming a general kernel function, the optimal bandwidth can be determined through solving two algebraic equations. Extensive numerical experiments demonstrate that the proposed fully automatic data-driven bandwidth selection method compares favorably with existing literature.
主講人簡(jiǎn)介:丁凱琳,理學(xué)博士,南京理工大學(xué)經(jīng)濟(jì)管理學(xué)院應(yīng)用經(jīng)濟(jì)系講師。南開大學(xué)理學(xué)博士,美國(guó)伊利諾伊大學(xué)香檳分校聯(lián)合培養(yǎng)博士,中科院數(shù)學(xué)與系統(tǒng)科學(xué)研究院 管理科學(xué)與工程博士后。主要研究方向有金融衍生品定價(jià)、金融風(fēng)險(xiǎn)管理、隨機(jī)仿真等。在SSCI和SCI期刊Journal of Futures Markets、Quantitative Finance、ACM Transactions on Modeling and Computer Simulation等期刊發(fā)表論文數(shù)篇。