報 告 人:彭實戈,中國科學院院士,山東大學教授
報告時間:2025.07.16 9:40-10:40
報告地點:蘇州大學本部天元講堂
報告摘要:In this talk we begin with (forward) stochastic differential equations (SDE, or FSDE) and backward stochastic differential equations (BSDE) driven by a standard d-dimensional Brownian motion defined on a probability space. The solution of the BSDE is in fact a path-solution of the corresponding (deterministic) quasilinear differential differential equations. This discovery, combined with the magic deep learning approach, provides a powerful tool of the numerical solution of a system of a high dimensional partial differential equation of parabolic and elliptic types. We also discuss the fully nonlinear case in which the Brownian motion is replaced by a d-dimensional G-Brownian motion under a nonlinear expectation space.
報告人簡介:彭實戈,中國科學院院士,山東大學教授,博士生導師山東大學泰山學堂院長,山東大學數(shù)學與交叉科學研究中心主任,2020未來科學大獎--數(shù)學與計算機科學獎獲得者。1974年畢業(yè)于山東大學物理系,1986年獲巴黎第九大學數(shù)學與自動控制三階段博士學位和普魯旺斯大學應用數(shù)學博士學位。主要研究方向為非線性期望與隨機積分,倒向隨機微分方程,隨機控制和金融數(shù)學等。彭實戈院士創(chuàng)立的“倒向隨機微分方程”(BSDE)在期權期貨等金融衍生證券定價中有重要的作用,他也是中國金融數(shù)學的奠基人。2010年在印度海德拉巴召開的國際數(shù)學家大會上,彭實戈院士被邀請做了《倒向隨機微分方程,非線性數(shù)學期望及其應用》大會報告。